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a b s t r a c t

For piecewise smooth data, edges can be recognized by jump discontinuities in the data.
Successful edge detection is essential in digital signal processing as the most relevant
information is often observed near the edges in each segmented region. In this paper, using
the concentration property of existing local edge detectors and the clustering property
of sigmoidal transformations, we provide enhanced edge detectors which diminish the
oscillations of the local detector near jump discontinuities as well as highly improve rate of
convergence away from the discontinuities. Numerical results of some examples illustrate
efficiency of the presented method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Detection of edges is one of fundamental and important tools in digital signal (image) processing, pattern recognition,
and many other scientific applications. It aims at determining boundaries of each particular region identified by jump
discontinuities. There are lots of prominent edge detection methods [1–13]. If the edge detection is performed successfully,
the amount of the signal data to be processed may be significantly reduced and thus redundant information is filtered out
while principal properties of the data are preserved. As a result subsequent process of analyzing the original signal becomes
rather simplified. However, edge detection is not always successful because real signals are moderately complex, in general.
Edges extracted from the complex signals (especially, images) are often hampered by fragmentation,missing edge segments,
and false edges [12].Moreover, applying a threshold to decidewhether an edge is present or not at a grid point is not a simple
problem because jump discontinuities occur at every grid point in discrete data.

In the literature [4–6], a family of edge detectors associated with particular concentration factors was provided. Though
the detectors can effectively find edges from spectral information, there are two major drawbacks as mentioned in [7]:

1. In order to pinpoint the edges one has to employ an outside threshold parameter to quantify the jump discontinuities of
large magnitude.

2. Oscillations, depending on the associated concentration factors, appear near the jump discontinuities.

In the work [7], an adaptive edge detection method based on a nonlinear limiter was proposed to suppress unwanted
oscillations near jump discontinuities. Nevertheless, the problemsmentioned above do not seem to be completely resolved.
In this paper we aim to develop enhanced local edge detectors, including a simple global threshold parameter, which
can eliminate the unwanted oscillations near jump discontinuities as well as further improve convergence away from the
discontinuities.
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This work is organized as follows: In Section 2 we recall existing local edge detectors and the sigmoidal transformation
with its basic properties which play important role in developing a new method. In Section 3, using the concentration
property of the local edge detectors and the clustering property of the sigmoidal transformation, we develop enhanced
local edge detectors without need of any outside threshold parameter. Finally, to show efficiency of the presented method,
some numerical examples are explored in Section 4.

2. The local edge detector and sigmoidal transformations

Let f (x), − π ≤ x < π , be a 2π periodic piecewise smooth function for which we wish to identify the points of
discontinuity. We denote by [f ](x) a jump function defined as

[f ](x) := f (x+) − f (x−),

where f (x±) indicate the right-hand and left-hand side limits of f (x) at x. Suppose 2N + 1 values, fj = f (xj) are given for
the grid points xj = −π + h · j, j = 0, 1, . . . , 2N , where h = 2π/(2N + 1). We denote by d a jump discontinuity of f (x)
such that [f ](d) ≠ 0.

In the literature [7] a local edge detector based on the difference formulas was introduced as

T2p+1,h(x) :=


2p
p

−1

∆2p+1fj, xj ≤ x < xj+1 (1)

for each j, where∆2p+1fj indicates the difference formula of order 2p+1 for an integer p ≥ 0. It has a so-called concentration
property for the jump discontinuity d as follows.

T2p+1,h(x) =

(−1)l
Ql,p

Q0,p
[f ](d) + O(h), if xj−l ≤ d < xj+1−l, |l| ≤ p

O

h2p+1 , otherwise

(2)

ash → 0 (orN → ∞),whereQl,p =


2p

p+|l|


. From (2) one can see the oscillatory behavior of T2p+1,h(x)near the discontinuity

d is increasing as p grows.
Because of the oscillations near the jump discontinuities and the various orders of convergence away from the discon-

tinuities, the aforementioned edge detector needs to be further improved. For example, based on a threshold parameter
signifying the minimal amplitude below which jump discontinuities are neglected, the edge detector T2p+1,h(x) can be en-
hanced by separating the smooth regions from the neighborhoods of the jump discontinuities (see [5]). However, the need
of an outside threshold parameter in the enhancement procedure is an impediment for detecting edges.

On the other hand we introduce a sigmoidal transformation γm(t), 0 ≤ t ≤ 1, of order m ≥ 1 which satisfies the
following properties.
(a) γm(t) ∈ C1

[0, 1] ∩ C∞(0, 1)
(b) γm(t) + γm(1 − t) = 1, 0 ≤ t ≤ 1, with γm(0) = 0
(c) γm(t) and γ ′

m(t) are strictly increasing on [0, 1] and [0, 1/2], respectively
(d) γ

(j)
m (t) = O


tm−j


near t = 0, j = 0, 1, . . . ,m.

The property (b) implies that

γm(s) = s, s = 0,
1
2
, 1 (3)

and, from (b) and (d), it follows that near t = 1

γ (j)
m (t) = δ0,j + O


(1 − t)m−j , j = 0, 1, . . . ,m, (4)

where δ0,j is Kronecker’s delta. Particularly, we can notice that γm(x) satisfies

γm(t) =


O


tm


, t <

1
2

1 + O

(1 − t)m


, t >

1
2

(5)

asm → ∞. That is, every point on the intervals [0, 1/2) and (1/2, 1] is respectively clustered to the values 0 and 1 by γm(t)
for m large enough, which we call a clustering property. For example, Fig. 1 illustrates the aforementioned properties of a
simple sigmoidal transformation γm(x) defined by Prössdorf [14] as follows.

γm(t) =
tm

tm + (1 − t)m
, 0 ≤ t ≤ 1 (6)

which we take in numerical implementation later.
Originally, sigmoidal transformations are used for numerical evaluation of singular integrals (see [15–18]). However, in

this paper sigmoidal transformations having the property (5) play prominent role in constructing new edge detectors.
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Fig. 1. Behavior of the sigmoidal transformation γm(x) for m = 2, 4, 8, 40.

3. Enhancement of the local edge detector

First, for a 2π periodic piecewise smooth function f (x) and for the grid points xj’s defined in Section 2, we consider the
first order local edge detector

T1,h(x) = fj+1 − fj, xj ≤ x < xj+1 (7)

for each j = 0, 1, . . . , 2N . A jump discontinuity d is identified by the adjacent points xk and xk+1 such that xk ≤ d < xk+1.
In order to improve the rate of convergence of the detector T1,h(x) away from the discontinuity, we set a function

G[m]

1,h (x) := T1,h(x)γm (θ1(x)) (8)

where γm(x) is a sigmoidal transformation of orderm and θ1(x) is a function defined as

θ1(x) =

T1,h(x)T1,h(x) +
T1,h(x − h)

 +
T1,h(x + h)

 + δ
(9)

for δ > 0 and h = xj+1 − xj = 2π/(2N + 1).

Theorem 1. The first order edge detector G[m]

1,h (x), with m large enough, has the following asymptotic behavior: For all xj ≤

x < xj+1

G[m]

1,h (x) =


[f ](d) + O


1
2m


, if d ∈ [xj, xj+1) and |[f ](d)| > δ

O


1
2m


, if d ∈ [xj, xj+1) and |[f ](d)| < δ

O

hm+1 , otherwise

(10)

as h → 0.

Proof. The concentration property (2) implies that

T1,h(x) =


[f ](d) + O(h), if d ∈ [xj, xj+1)
O(h), otherwise

as h → 0. Suppose that d ∈ [xj, xj+1). Then from the concentration property of T1,h(x) above we have

θ1(x) =
|[f ](d)| + O(h)

|[f ](d)| + O(h) + δ

for xj ≤ x < xj+1, as h → 0. Thus

θ1(x) ≷
1
2

if |[f ](d)| ≷ δ, respectively.

On the other hand, when d ∉ [xj, xj+1),

θ1(x) = O(h).

Therefore, from the definition of G[m]

1,h (x) and the clustering property of γm(x) in (5) we have the asymptotic relations
in (10). �
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Referring to the results in Theorem 1, we note the following.

i. G[m]

1,h (x) with large m can highly improve convergence rate of T1,h(x) away from the jump discontinuity. Thus G[m]

1,h (x) is
available for an edge detector which enhances separation of the jump discontinuity from smooth regions.

ii. We can use δ for a global threshold parameter in the sense that every jump discontinuity whose amplitude is below δ is
neglected. In addition, δ prevents the denominator of θ1(x) vanishing.

iii. Thanks to the terms |T1,h(x − h)| and |T1,h(x + h)| in (9), even the badly fluctuating part in the smooth region can be
flatted as illustrated by the numerical example for f2(x) in the last section.

Similarly to G[m]

1,h (x), we define new higher order local edge detectors as follows.

G[m]

2p+1,h(x) := T2p+1,h(x)γm

θ2p+1(x)


, (11)

where p ≥ 1. The function θ2p+1(x) is defined as

θ2p+1(x) =

T2p+1,h(x)
T2p+1,h(x)

 +

p
k=1


|T1,h(x − kh)| + |T1,h(x + kh)|


+ δ

(12)

with δ > 0. Then we have

Theorem 2. The higher order edge detector G[m]

2p+1,h(x), with m large enough, has the following asymptotic behavior: For all
xj ≤ x < xj+1

G[m]

2p+1,h(x) =



[f ](d) + O


1
2m


, if d ∈ [xj, xj+1) and |[f ](d)| > δ

O


1
2m


, if d ∈ [xj, xj+1) and |[f ](d)| < δ

O


1
2m


, if d ∈ [xj−p, xj) ∪ [xj+1, xj+1+p)

O

h(2p+1)(m+1) , otherwise

(13)

as h → 0.

Proof. The proof for each case except for d ∈ [xj−p, xj)∪ [xj+1, xj+1+p) is similar to that of Theorem 1. Thus we consider the
exceptional case only as follows.

Suppose that d ∈ [xj+α, xj+α+1) for some integer α such that 1 ≤ |α| ≤ p. Then from the definition of θ2p+1(x) in (12)
and the concentration property of T2p+1,h(x) in (2) we have

θ2p+1(x) ≤

T2p+1,h(x)
T2p+1,h(x)

 +
T1,h(x + αh)


=

|cα[f ](d)| + O(h)
|cα[f ](d)| + O(h) + |[f ](d)|

<
1
2

as h → 0, where cα = (−1)α Qα,p
Q0,p

. The last inequality holds by the fact |cα| < 1. Therefore, the definition of G[m]

2p+1,h(x) and
the clustering property of γm(x) in (5) imply that

G[m]

2p+1,h(x) = O


1
2m


.

This completes the proof. �

The theorem above indicates that the higher order edge detector G[m]

2p+1,h(x) with large m can sufficiently enhance the
separation of the neighborhood of the jump discontinuity d from the smooth regions without any oscillation.

4. Examples

We take the following examples employed by Gelb and Tadmor [7].

f1(x) =



x + π

π

5

, −π ≤ x < 0
x − π

π

5

, 0 < x < π

(14)
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(a) f1(x). (b) f2(x).

Fig. 2. The first order local edge detector T1,h(x) and the presented edge detector G[m]

1,h (x) with m = 2 and 20 in (8) for the data of f1(x) and f2(x) with
N = 60.

(a) f1(x). (b) f2(x).

Fig. 3. Log errors of T1,h(x) (dotted line) and those of G[m]

1,h (x) (solid lines) withm = 5, 10, 20 for the data of f1(x) and f2(x) with N = 60.

whose jump function is

[f1](x) =


−2, x = 0
0, x ≠ 0

and
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(a) f1(x). (b) f2(x).

Fig. 4. The fifth order local edge detector T5,h(x) and the presented edge detector G[m]

5,h (x) with m = 2 and 20 in (11) for the data of f1(x) and f2(x) with
N = 60.

(a) f1(x). (b) f2(x).

Fig. 5. Log errors of T5,h(x) (dotted line) and those of G[m]

5,h (x) (solid lines) withm = 5, 10, 20 for the data of f1(x) and f2(x) with N = 60.

f2(x) =


sin7(x + π), −π ≤ x < −

π

2 x
π

3
− sin


9x
2


+ 1, −

π

2
< x <

π

2

sin7(x − π),
π

2
< x < π

(15)

whose jump function is
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[f2](x) =


0.5821, x = −

π

2
−1.418, x =

π

2
0, x ≠ ±

π

2
.

Fig. 2 shows that the presented first order edge detector G[m]

1,h (x), with δ = 10−6 in (9), enhances separation of the
jump discontinuities from smooth regions. It should be noted that G[m]

1,h (x) flats sufficiently both the vicinity of each jump
discontinuity and the badly fluctuating part in the smooth region. This effect results from themultiplicative factor γm(θ1(x))
including the terms |T1,h(x − h)| and |T1,h(x + h)| in (9). In addition, log errors of G[m]

1,h (x) for the jump function [f1](x) are
illustrated in Fig. 3, which implies thatG[m]

1,h (x) converges faster away from the discontinuities as the orderm of the sigmoidal
transformation goes higher. Therein, log errors of T1,h(x) indicated by dotted lines are included for comparison with those
of G[m]

1,h (x).
For a higher order edge detector, we consider the fifth order (p = 2) local edge detector as follows.

T5,h(x)
1
6


−fj−2 + 5fj−1 − 10fj + 10fj+1 − 5fj+2 + 5fj+3


(16)

for all xj ≤ x < xj+1, j = 0, 1, . . . , 2N . The concentration property in (2) implies

T5,h(x) =



[f ](d) + O(h), if d ∈ [xj, xj+1)

−
2
3
[f ](d) + O(h), if d ∈ [xj−1, xj) ∪ [xj+1, xj+2)

1
6
[f ](d) + O(h), if d ∈ [xj−2, xj−1) ∪ [xj+2, xj+3)

O(h5), otherwise

(17)

as h → 0. Results of higher order local edge detectors T5,h(x) and G[m]

5,h (x) are compared in Figs. 4 and 5. The results are
consistentwith the concentration property, (13) ofG[m]

5,h (x). That is, the figures show that the presented edge detectorG[m]

5,h (x),
with m large enough, can eliminate sufficiently all the oscillatory points of T5,h(x) near each discontinuity as well as highly
improve convergence to the jump function [f2](x) outside jump points.
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